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NOMENCLATURE
Description Symbol

Outer radius of cylinder T
Half-length of heat-generating segment Ta
Specific heat a
Function defined following Eq. 16 B
Heat-transfer coefficient at boundary

Y Y2
Thermal conductivity

A
Biot number

c
Fourier cosine transform variable

n
Laplace transform variable

]
Radial coordinate

K
Time

ot
Radial and axial displacement functions

v
Axial coordinate

£,
Functions defined by Eqs. 43-45 '

P
Function defined by Eq. 50 .

P
Function defined by Eq. 55

o
Young's modulus o

T
Function defined by Eq. 30

¢, Q
Modified Bessel functions of first kind

X
Bessel functions of first kind i

®, T, etc
Heat-generation function

®, T, etc
Constant heat-generation rate

®, T, etc

Dimensionless heat-generation rate

Description
Temperature
Constant reference temperature
Coefficient of thermal expansion

Dimensionless half-length of heat-
generating segment

Auxiliary variables defined by Eq. 31
Function defined following Eq. 45
Dimensionless axial coordinate
Heaviside function

Circumferential coordinate
Thermal diffusivity

Auxiliary variable defined by Eq. 31
Poisson's ratio

Roots of Eq. 22

Dimensionless radial coordinate
Density

Stress components

Dimensionless time

Stress functions defined by Eq. 9
Love function

Dimensionless forms of ®, T, etc.
Laplace transform of @, T, etc.

Fourier cosine transform of ®, T, etc.






TRANSIENT THERMAL STRESSES
ASSOCIATED WITH SUDDEN INITIATION
OF INTERNAL HEAT GENERATION IN A

SEGMENT OF A CIRCULAR CYLINDER

by

Richard A. Valentin
and Daniel F. Schoeberle

ABSTRACT

An exact solution is given for the quasi-static thermal-
stress field associated with the transient temperatures aris-
ing when an infinite, homogeneous, isotropic, right circular
cylinder, cooled at its surface by a temperature-independent
boundary conductance, suddenly begins, and thereafter main-
tains, uniform internal heat generation within a finite axial
region. The problemis of interest incertainnuclear-reactor
analyses related tothe behavior of fuel elements during power
transients. The solution form is well suited to numerical
evaluation, and extensive numerical results are given.

I. INTRODUCTION

The solution of three-dimensional ther‘moelasticity problems asso-
ciated with distributed volumetric heat sources, while certainly not unique
to the design and evaluation of nuclear-reactor components, could reasonably
be expected to occur frequently in the specialized literature of the reactor
field. That this is not necessarily the case is revealed by examining
commonly used monographs such as Zudans et al.! and design information
such as that contained in the Reactor Handbook.? Component geometry and
details of the neutron flux justify the use of elementary plane stress and
plane strain formulations in many cases. However, even allowing for this,
the number of solved three-dimensional steady-state and transient problems
involving internal heat generation is quite small. With the exception of a
few papers, such as Burgreen® and Kolesov,* related to transient behavior
of small, homogeneous, fast systems, elasticity problems occurring in
reactor design seem to have immediately spawned computer codes. Although
this trend toward computer solutions may be explained in part by the his-
torical importance and necessity of computers in reactor physics, it has
resulted in a dearth of exact solutions and a tendency to immediately apply
finite -difference methods in all but the most elementary situations.
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The present work, beyond its value as an approximation to certain
physical situations occurring in reactor fuel rods during power transients,
illustrates the type of exact solution that can be provided as a "module" in
large safety-analysis codes to replace thermal-stress subroutines requir -
ing extensive storage and long execution times. In addition, this report '
gives a convenient set of known results for preliminary testing of compre-
hensive codes applicable to those situations whose complexity precludes
exact analysis.

The problem to be treated concerns the transient temperature field
and associated stress field caused by sudden initiation of uniform internal
heat generation in an axial segment of an infinite right circular cylinder.
The cylinder is homogeneous, isotropic, traction-free, and cooled at the
surface through a temperature-independent boundary conductance. The
assumed step function of time in the heat-generation rate cannot be realized
by any physical process occurring within a reactor; however, it has value
as an extreme limiting case. In addition, more realistic problems may be
treated by the usual convolution integral applied to this solution and to any
time variation of power for which the neutron flux (and hence the heat gen-
eration) is separable in time and space. The axial jump in heat-generation
rate is also unrealistic but may be regarded as an approximation to the
axial variation near a partially inserted bank of strong control rods, or as
a model of behavior expected from a fuel pin having uneven axial fuel
enrichment.

The solution presented assumes time and temperature independence
of all occurring material properties and is exact within the framework of
classical quasi-static thermoelasticity theory. Neglect of coupling and
inertia effects is in part justified by well-known results in dynamic thermo-
elasticity (e.g., Nowacki," p- 262), and by the smoothness to be expected of
the temperature field in both time and space. In some details, the solution
resembles one obtained by Youngdahl and Sternberg® for the transient stress
field in a cylinder resulting from a sudden uniform change of surface tem-
perature over a finite band. However, in addition to the obvious differences
of internal heat generation and surface cooling through a boundary conduc -
tance, the stress-function formulation is different. Rather than the
Papkovich-Neuber functions, application is made of stress functions closely
related to the Love function and associated with the name of Hoyle.s

The temperature field is determined by combined use of Fourier
cosine, Laplace, and finite Hankel transforms in axial position, time, and
radial position, respectively. Solution of the associated stress problem
then follows from the equations defining the Hoyle stress functions and the
boundary conditions of zero surface traction. The stress functions, dis-
Placements, and stresses are express.ed as a combination of series and
integral expressions involving only elementary functions, Bessel functions,



and the complementary error function. Numerical results are given for the
temperature and stress components at the cylinder centerline and surface
as a function of time and axial position for various combinations of the

Biot number and length of the heat-generating segment.

II. PROBLEM FORMULATION

The heat conduction and associated thermoelasticity problems
described in the introduction are conveniently referred to cylindrical co-
ordinates (r,0,z) in which r, 6, and z are, respectively, the radial, cir-
cumferential, and axial coordinates. The rotational symmetry of the
problem ensures that all field quantities are independent of the circumfer -
ential coordinate, 6. Determination of the temperature field requires
solution of the equation of heat conduction,

e T R @ ek i
“(ﬁ -7 *9)*& = 3 (1)

for 0 < t < = in the cylindrical region 0< r< a, -» < z < «». In Eq. 1, the
constants k, P, and c are the thermal diffusivity, density, and specific heat,
respectively, of the cylinder; Q is the heat-generation rate per unit volume
as a function of position and time. It is assumed that the cylinder, initially
at uniform temperature T, suddenly begins uniform internal heat generation
at the constant rate Q, in the axial segment between z = -b and z = b, the
heat-generation rate being zero in the remainder of the cylinder. Heat is
lost to a surrounding medium of constant temperature Ty through a
temperature -independent boundary conductance, h.

From the above description, the heat-conduction problem is specified
by the initial and boundary conditions

T(r,z,0) = Ty 0<r<a, -0 < z< o,

k(%-:)=h(To-T), r =& -0 £ z £ o, 0.< .8y .
to which must be appended the regularity condition

T+ Toas |s]> = 0<t< @ 0LrL a, (3)
and the definition of the heat-generation function

Q = Qnithb - |z|), (4)

where 7)(:) is the usual Heaviside function. It is convenient to introduce
dimensionless quantities defined by
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p:r/a, C=z/a, T =:_§,

T(r,z,t) = To[l + QT (p, ¢, 7)), (5)
= Q}az = h_a =
= T ; m = K’ B = b/a.

From Egs. 1, 4, and 5, the heat-conduction equation becomes

VZ%-Z—Z=-n(ﬁ-1C|), (0<P<L =< £ 0L T< @) (6)

where

while the initial, boundary, and regularity conditions (Eqs. 2 and 3) become

T(.¢0) =0 0<pLl, -»< < o

(‘\’—T+m%) =0, | ~m < <o DR i) (7)
9 p=1

T-0as|t|]>w, 0<p<l, 0<KT<K m

The thermoelasticity problem associated with the temperature field
satisfying Eqs. 6 and 7 can be solved in terms of appropriately generalized
Papkovich-Neuber stress functions. However, an alternate approach is
possible using a set of stress functions discussed by Hoyle." The latter
functions are closely related to the Love formulation of rotationally sym-
metric isothermal problems and have a slight advantage over the Papkovich-

Neuber form in the amount of algebraic manipulation required to generate
the stress field.T

By including a rotationally symmetric temperature field in the
classical derivation of the Love function as found in Love (Ref. 9, P- 274),

Wwe can represent the displacement and stress fields in terms of two func-
tions satisfying

3% , 130 , ¥ %0, 130 , %0 _ _L (0
o A R e R e i Lol S W0 2 e——Ila— -aET].
s T or 32 w dr? y r or 5 dz? 1-v\3,2 3 (8)

TAn additional motivation for this choice of stress functions is the added convenience in comparing the isotropic
solution with that for a transversely isotropic solid. The transversely isotropic case can be handled by a stress-
function formulation of Singh,8 which is a direct analog of that used in this report.



In the absence of a nonuniform temperature field, the Love function,
X» may be defined in terms of ® and Q through dx/0z = ® + Q and all
displacements and stresses expressed in terms of ¥ alone. However, for
nonuniform T, this reduction to a smgle stress function is not possible.
If the dimensionless stress functions () and & are defined by

a?EaToQ
1 -v

and

2 —
EaT a

°=a aoQ¢'
1-v

then Eq. 8 becomes
v = o,

1 % 4

V2% s iy (9)

(0Pl - w<L< w0<T< ),

and, with the dimensionless displacements and stresses Uy, Uz, Orp, 899 ‘
G4z, and Oy, related to the actual components by

up(r,z,t) = t:aaToﬁﬁr(p.c.T)'
, (10)

Qa
Ope(rr2at) = 82 8o (p, 67Dy s coes o

the displacement and stress fields are obtained from

g, = -0 3%
3 op’
i, .20 28 (11)
S T
A =a_+ (ao+an) ]
Orr c ap
P 3%, af A
Sgg = 16--(5 *a—)-(l-v)T.

26,13 r (12)

alz=$f pdp’

B 3%
™" T3pdl J
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Since the surface of the cylinder is assumed traction-free, the boundary
conditions on the stress field are

Gepll, 7) = 0, . OpgiEiwIuNg (13)

(~20€ & ooy 0 <M TG IR
and, in addition, it is necessary that

Orr, 699: Gzz» Orz = 0 as IQI k00 (14)
The solution of the thermoelasticity problem associated with the tempera-
ture field satisfying Eqgs. 6 and 7 thus requires the determination of func-

tions  and @ satisfying Eq. 9 subject to the boundary conditions implied
by Egs. 12, 13, and 14.

III. THE TEMPERATURE FIELD

Considering the evident symmetry of the temperature field about the

plane { = 0 and the assumed regularity conditions on the solution, the
Fourier cosine transform

) 2wz % L
T (p,p,7) = (;) fo T{p, &) complidl; (15)

when applied to Eq. 6 yields

oT

FIE sy s e
T = e 5 (p) (16)
where
powial Sy
Vé=—t4+=L
Y 3R pdp
and

2\/2 gj
ip) = (—f sRph.
™ P
The initial and boundary conditions (Eqs. 7) transform to
T(pp,0) =0, 0 p< 1y "

oT
op

?

(17)

tmT =9, p=1, 0<7< =



Applying the Laplace transform,

T(p,p,q) = AT T (o, p,7) exp(-q7) dT, (18)

to Eqs. 16 and 17 then implies
ViT - (p?+q)T = -q"'(p), 0<p< 1, (19)

with the boundary condition

T i
g_p tml =0, p =1 (20)

The most straightforward solution of Eqs. 19 and 20 follows from the
application of the finite Hankel transform of zero order, '’

T*(¢;, prq) = [ol pT(p P, q) Jol(pEi) dp, (21)

where £ are the positive, real roots of
mlo(E) = £J,(€). (22)

The Hankel transform (Eq. 21), when applied to Eq. 19 together
with the transformation properties of the Vf operator and the integral

l -
/. p3olot) ap = £7'0,(0),
immediately yields the transformed solution

f(p) Jx(ﬁi)

Lk e e O (23)
q(ef+p®+q) €

T*(¢;Prq) =

The inversion formula for the zero-order finite Hankel transform (Ref. 10,
p. 84),

4 EXT*(£;, P, q) Jolot;)
T(p.pra) = 2 Z (m?+£3) J3(;)

and Eqs. 22 and 23 give

£(p) Jolot;)
(m?+£2)(€2 +p?+q) q Jo(€1)

T(pyprq) = 2m z (24)
i

13
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The inversion of the Laplace transform is, formally, a simple matter
in Eq. 24 and gives

£(p){1 - exp[-(p®+£}) 71} To(pk;)
= - (25)
T(P'p:T) Zm z (p2+€f)(mz+€12) Jo(éi)
Inversion of the remaining Fourier cosine transform, using
(2
T(pLo7) = (%j /o T(p,p,T) cos p{ dp
and Eq. 25, then yields
T(o.0.7) = Talp. &) + Talp, . 7). (26)
where
_ 4m Jolp&;) * sin pB cos pg 27)
Tuero) = Z m? +E7) JolE; )/ pprre)
and
4m Jo(pE;) ” sin pB cos pC exp[-(p?+£2) 7]
(p. ) = T Zyad 2o a2 dp.
(m?+£2) Jo(t;) p(p*+Ef)
(28)

Several of the operations used to obtain Eqs. 27 and 28 are only
valid in a formal sense. However, these manipulations and several of a
similar nature to follow are justified in the final validation of the solution
by substitution into the original equations and by investigation of the con-
vergence of the various series representations.

The improper integrals in Eqs. 27 and 28 may be evaluated by
reference to standard integral tables. For example, the integral in Eq. 27,

upon comparison with integrals 3.741.2 and 3.742.5 of Ref. 11, immediately
yields

z—gf - exp(-B€;) cosh LE;], < B,

" sin Bp cos pt P
l pEIrED) T ) 1 i

=5 exp(-LE;) sinh BE;, L > B

\ «5i




To evaluate the integral in Eq. 28, one uses the factorization

0 _
Fi(C7) Ef R oot B ol + ) )
: 0 P(Pz‘*'iiz) dp

e exp(-efT){f"m p ! sin Bp cos pf exp(-p’7) dp

" P sin cos
'f —fﬁz—pc exp(-p®7) dp},
() P"+E;

the identity sin pp cos p{ = 3[sin p(B +£) + sin p(B - )], and the integrals
2.4.2]1 and 2.4.26 of Ref. 12 to givet

s
BylL.T) = _852 exp(2Y,ui) erfc(y, +pu;) - exp(-2Y,4;) erfc(y, -ui)
i

+ exp(2Yai) erfc(y, +1i) - exp(-2Y1i) erfely, - 44)
s exp(-ﬁizT)[Z - erfc(V,) - erfc(’Yz)]}. (30)

where the auxiliary variables

Bi = /Ty M = %g and 7, = [32/75 (31)

have been introduced. Itisa simple, if somewhat tedious, matter to verify
that the solution given by Eqs. 27-30 is a valid solution of Egs. 6 and 7 and
that convergence is assured within 0 < p< 1, -» < < = for all 7 > 0.

Although Eqs. 27-30 are in an ideal form for the numerical evalua-
tion of the temperature field, the solution of the associated thermoelasticity
problem becomes somewhat easier if the steady-state portion of the solu-
tion, f‘l(p, ), is expressed as an integral. If one considers the steady-
state problem

VE, = ne-lgl), 0<pgl o< < w,

(& +m'i‘l) D it EE -, (32)
op p=1

Tiwnas [l Bgpg L,

In the evaluation of this integral, it was noted that the integrals 3.954.1 and 3.954.2 of Ref. 11 were
incorrectly transcribed from 2.4.26 and 1.4.15 of Ref. 12. Equation 30 may also be taken directly from
Eq. 48 of Ref. 5.
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and applies the Fourier cosine transform to obtain

V3T, - p*T, = -fp), 0L p< 1,

L (33)
<§L+mT > = 0,
% p=1

the solution of the transformed problem may be immediately written as

p){pLi(p) + m[I(p) - Io(PP)]},

el = =

which, upon inversion of the cosine transform, yields

£1(o £) = %/ sinpp cos pt{pI,(p) + m[Io(p) - I°(pp)]}d il
0

p’[pLy(p) + mIy(p)]

The complete equivalence of Eq. 34 and Eqgs. 27 and 29 may be
demonstrated by standard complex-variable methods applied to Eq. 34. In
considering the stress-function equations Eqgs. 9, we shall thus assume the
temperature field to be given by

L %/“’ sin pf cos pEEL(p) + mlke) - Lo} 4
0

p3[pLi(p) + mIy(p)]

(35)

_4m * sin p[-} cos pt ZJo(pﬁl)exp[ P +€1)‘r]
(L (P +ED) (M2 +£5) To(E)

but for numerical evaluation, Eqs. 27-30 will be used.

IV. THE ASSOCIATED STRESS FIELD

The associated thermoelasticity problem requires the determination
of functions {(p, ¢, 7) and d>( p,€, T), finite at p = 0, satisfying Eqs. 9 with the
temperature field given by Eq. 35, and such that the stresses derived from

Eq. 12 satisfy Eqs. 13 and 14. The solution of the first equation of Egs. 9is
taken in the form

ﬁ(pyc,T) = % fom sin pP cos ?Clo(pp) A(p, T) dp, (36)



where A(p, 7) is an as yet unknown function to be determined by the bound-

ary conditions in Eq. 13. The second equation of Eqs. 9 is assumed to have
a solution

= B+ & + &, + &,

A
where @, is harmonic and

vig; = A, )
VZ&;z % -'fz,
(37)
and [
25 o 1 %
Ve, I-vor |

Analogously to Eq. 36, the harmonic function $o(p. £, 7) has the representation

8o(p- L,T) = % j;w sin pp cos ptly(pp) B(p,7) dp, (38)

where BSP, T) is to be determined by Eq. 13. The particular solutions &),.
®,, and ®; are easily found by inspection of the equations resulting from
application of the Fourier cosine transform in [ toEqgs. 37. The appropriate
particular solutions are given by

& . l = sin pﬁ cos pc {
®,(p, L) = s
e, € ™ [ ps[pll(p) + ml,(p)] PP x(ppf

+ 2[pI,(p) + mlo(p)] - [2m + p*(1+m/2)] Io(PP)} dp, _ (39)

A 4m ot . Jolet;) exP['(Pzi"Ef) 7]
®(p, L T) p ! sin pB cos pg : dp, (40)
: 5 21: (pz+€f)z(mz+ﬁf) Jol€i)

and
83(0.L,7) = - 1r(l_l-v5 /om sin pp cos ptlpplLi(pp)] Alp,7) dp. (41)

Upon reference to the boundary conditions (Eq. 13) and Eq. 12, the
functions A(p, 7) and B(p, 7) are to satisfy
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30 1(a&> a@)] :
e v i = 0,
I:aCZ P ap Fp pP=1

azcﬁ) S
(apat p=1

Substitution of Eqs. 38-40 into Eqgs. 42, evaluation of the result at p = 1,
and the requirement that the integrands of the resulting integrals vanish,
imply the following two conditions:

(42)

—_—

plo(p) Ai(p, 7) - Li(p) By(p, 7) = mplo(p) - [2m + p?(1+m/2)] 1,(p)
+ 4m’p[pI,(p) + ml,(p)] Clp, 7),

and

[p* + 2(1-2)] Li(p) Ai(p, 7) - po(p) By(p,7) = p*(1+m/2)[2L,(p) - plo(p)]

- 4mp’[pl;(p) + mlo(p)] Clp, 7).

where
- (43)
Alp7) = LY A1)
plpLi(p) + mlo(p)]
B (Pr T)
Blp,7) = 1 ,
¥ ZPS[Pll(P) + mly(p)]
and
2 iaE
Clp, 7) = exp[-(p®+£5) s i
; Z (p?+€§) m2 +£2) e
Solution of the pair of simultaneous equations (Eqs. 43) then yields
BlpT) = i {_ 12 + 2mlo(p) I,(p) + ( +2) pI? }
: p*8p)pL(p) + mL) L T olp) + 2mlo(p) Li(p) + (m +2) pIf(p)
z 4’:+(p‘)7/) [pLi(p) + mIo(p)] Clp, 7). (a4)
and
8,7 - mﬁ» e ma 2+ 2 - ma -] plgenye + [ + 20-v][am + 20+ mi2) lf@} =

2m
- m{ﬂjloln) + 2 + 20-u] |1inl}Clp_ v,
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where
Alp) = [p? + 2(1-v)) 13(p) - p4&(p).

Substitution of Eqs. 44 and 45 into Eqs. 36 and 38-41 gives the stress
functions

ﬁ(P' EeT) = —Z(l,n_. V)/ g p) cos polsee) {-mpIZ(p)

p*A(p)[pLi(p) + miy(p)]

+ 2mlIo(p)I;(p) + (m +2) pI¥(p)} dp

_8m(l - v)/°° sin pp cos pt

L) [pIi(p) + mIo(p)] Clp, 7) dp,  (46)

and

a 5048 i sin pB. cos pl 2
¢(p.c.)——] { (1-v) - I,(p) - mply(p)
T = : o A )PL () + ML)l [[m v) - p°] Lilp Plo\P ]

- [ppLi(p)i(ppe) - plo(p)lo(pp)] + Alp)[pI,(p) + mlo(p)]} dp

4m/ sin pfA(CO)s PE { 1y(pp)p lo(p) + mip?+1 - ) I,(p))

« $%1(pp)alilp) + mlo(p)]} Clp.7) db
= Jo(pki) exp[-(p2+£7)
& 4Tm p ! sin pB cos pg Z (;zii-z)g(rigfﬁ)f) Jol(ﬁ;r)] dp. (47)

0

The integrals in Eq. 46 and the first two integrals of Eq. 47 are in
a form suitable for numerical evaluation. However, the improper integral
over the infinite series that constitutes the last part of Eq. 47 is inconvenient
for numerical work and, hence, is first evaluated in closed form. Assum-
ing an interchange of integration and summation is valid in the last term
of Eq. 47, we must evaluate

00 i 2
Byt ) =f sin pp cos pl exp[- (pz+€ ) 7] dp. (48)
()

plp2+ed)’

This integral may be computed from Eq. 30 by noting that
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exp 517')
Di(t,T) = - —})E?'E exp(£ir) F; (C,T)] (49)

or, alternately, it may be taken directly from Eq. 78 of Ref. 5.

It is found that

(T ) E4 {(1 -V -15) exp(2ui7y) erfe(y; +7,)

- (L4piY -#5) exp(-2u;7)) erfc(iy -7y)
+(1-piz -13) exp(21iY;) erfc(s; +7,)
- (1+u{Y2 - 1) exp(-2147,) erfe(y; -72)
+2 exp(-£]7)[2 - exfe(r)) - erte(v,)l}, -
and the required stress functions are thus specified by Eqs. 46 and 47 to-

gether with Eq. 50. The generation of the stress field' then follows by sub-

stitution of the stress functions (Eqs. 46 and 47) and the temperature field
(Eq. 36) into Eqs. 12. The stresses then appear as

8x'r(/:’vC-T) = %/m sin pB cos pg

{[m(l-v)- Z]I()_ L(p)}
PSA(P)[PII(p) + mIo(p)] { P 1\P mply(p

 {Lo(pp)lplo(p) + Li(p)] - ppLi(p),(pp)}
+ 7 'Li(pp){mvpId(p) + [m(1 -v) + p%] L(p),(p)
+ (1-v)(2+m) pIi(p)} - & (p)[pI(p) + mlo(p)]} dp

4m [ sin Pﬁ Ccos pC C(P:T){Io(PP){P(m +pl) IO(P)

+[2m(1-v) + p¥m + 1)) L(p)} - (pp) 'L (pp){p[2m(1 - v) + p?] Io(p)

g [Zm(l -v) + p’[m + 2(1 - v)]] Li(p)} - p%eL,(pp)lpL,(p) + miIo(p)) } dp

Lo et ey T B
% Z(m"r&fno(ei){p b b

+ Jo(p€;)[Fi(L, 7) - EfDi(C.T)]}, e

T
The explicit expressions for the displacement components have not been included; however, they may be
readily computed from Eqs, 46 and 47,
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4 © o
+ —,',“/ = pf :°‘ P C(P-T){-(l - 2) ply(pp)lpl,(p) + mIo(p)]
o

+ (pp) 'Li(pp)plo(p)p? + 2m(1 - v)] + 1,(p)[p?[m + 2(1 - )] + 2(1 - v)])} dp

_ 4m 1

™ L m [p™"€i3:(pE;)D;(C. 7) - Jo(pE;)F; (2. 7)),
1 1 1

(52)

< 5. X3 .
8a2lp. G 7) = ;[ PP O PE__ ((m(1-v) - p*] 1,(p) - mplo(p) Moo (21, (p)

P 4(p)[pLi(p) + mlo(p))

- plo(p)] + pol(pp) Li(p)}dp + ‘"L“lo ﬂﬂ&;‘,‘lﬂ Clp. 7){lo(ppXp(2m - p?) Lo(p)

- [2m(1 - v) + p*(m - 2)] 1,(p)} + p*eLi(pe)lPLi(p) + mlo(P)]} dp

,4m Z £8T0(pt;)

D; (L. 7).
T AT R

(53)

and

2 5 sin sin
ey O e LR R R
rz\p G T ."/n P ()P () + misp)] {[p* - m(1-v)] 1,(p) + mply(p)}

- [Lo(p),(pp) - plolpp)ly(p)] dp
‘"‘/ = "“ TEEE Clp. P LelpellpLip) + mlg(p)]

- Lipp)[pLolp) + mi,(p)2(1 - ¥) + p‘]]}dp

4+ 4m 1(5p) =
- Z(m +e’>J T i (54)

In the above equations, C(p, 7) is given in Eq. 43, Dj (£, 7) in Eq. 50,

A(p) after Eq. 45, F;({,T) in Eq. 30, and
E;(¢.T) = E% {(1 - Zy:«bzl.q'h) exp(-2u1Y;) erfc(yj -Y;) + (1- Z#: - 214;7;) exp(2u;Y;) erfe(u; +7,)
i
- (1-2pf +2u7)) exp(-2Y,) erfclus - M) - (1- 245 - 2157)) exp(2i47,) erfe(y; +7,)

:EX e )exp(- - exp(~
v xp(u)exp(-7d) - exp(-])1}. (55)

where the auxiliary variables are as in Eq. 31.
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Verification that the series and integrals contained in the represen-
tation of the stress field (Eqs. 51-54) are uniformly convergent in0 < p <l
—0< < oo for all 7 > 0 is straightforward. Furthermore, termwise
differentiation and differentiation under the integral sign as needed to check
satisfaction of stress equations of equilibrium are easily justified, and
verification of the boundary conditions (Eq. 13) is immediate. It may also
be shown that as B - » and { - 0, the above solution approaches the
corresponding plane strain solution. However, this is a somewhat te.dious
process involving, for example, the expansion of various integrands into
power series valid for small values of the variable of integration.

V. RESULTS AND DISCUSSION

The numerical work associated with evaluation of the temperature
field (Eq. 26) and the stress field (Eqs. 51-54) was performed by a single
FORTRAN program run on the IBM SYSTEM 360/75. Beyond the elemen-
tary functions, the only needed subroutines were those used to calculate
the Bessel functions Jg, J;, I, and I, and the complementary error function,
plus a root finder to evaluate the £; defined by Eq. 22, and an integration
routine. The various function routines were standard programs. The inte-
gration subroutine was specially written after examination of the stress-
field integrands indicated that a modified Simpson's rule with a variable
upper integration limit and variable step size would provide sufficient
accuracy, there being no need to evaluate the asymptotic "tails" of the inte-
grals. The subroutine to compute the £; values was bypassed in most
computations in favor of reading in a previously computed set of roots or
those obtained from tabulations such as those contained in Ref. 13. The
Simpson's-rule subroutine computed the integrals over an increasing
number of periods of the integrand, comparing each succeeding value of
the integral with the previous until these differed by less than some assigned
value (10 %in most of the computations). All function subroutines were
accurate to at least 7D, and in most cases it was found sufficient to employ

only the first six roots £; to achieve 7D accuracy in summations such as
that defining C(p,T).

The methods outlined were of sufficient accuracy that, for example,
the boundary condition G..(1,£,7) = 0 was met to 6D for all C,T in the
ranges computed. The temperature field and the resulting stresses were
evaluated for four combinations of the length of the heat-generating segment,
B, and the Biot number, m. The Biot number was taken as either m = 0.1
or m = 10.0, corresponding in a rough sense, respectively, to a poorly
cooled cylinder, say gas-cooled, or to a much more efficient coolant, say
water. For each value of m, the heat-generating length was either a
"small" value, 8 = 0.5, or a "large" value, B = 4.0. The small value
could model the effect of local hot region caused by uneven fuel loading.

The large value closely approximates near £ = B the stress field caused by
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a heat-generation rate in the form of a Heaviside function (the field near
€ = P being insensitive to the jump at £ = -B, particularly for large m).
This heat-generation rate models the effect of a strong axial gradient in
the thermal-neutron flux caused by, say, a partially inserted bank of
strong control rods.

In each of the four combinations of the parameters m and B, the
temperature and stresses were computed at p = 0, 0.5, and 1 and, for each
value of p, at timesT = 0.01, 0.04, 0.1, 0.2, 0.5, 1.0, and 5.0 plus the
steady state, T = ®. Axial computations for each p and T were made at
increments Af{ = 0.1 for 0 < { =< 2 in the case B = 0.5 and at increments
Af = 0.5for 0< £ =<8 plus AL = 0.2 for 3 =< £ = 5 in the case B = 4.0.
This amounted to evaluating Eqs. 26 and 51-54 for almost 8,000 combina -
tions of m, B, p, {, and 7 and required approximately 120 min on the
SYSTEM 360/75.

The numerical results presented consist of four groups of four
graphs, one group of four for each pair of parameter values m and B. Each
group gives the axial variation of temperature, axial stress, and circum-
ferential stress at the surface and centerline and the shear stress at the
radial midpoint, p = 0.5. The radial stress component is not explicitly
shown. However, its general features may be determined from the graphs
since at the centerline it is identical to 869 and it vanishes at the cylinder
surface. Appropriate steady-state plane-strain values at p = 0, 1 have
also been included on each graph as convenient points of reference for com-
parison of corresponding results with differing parameter values m and B.

Figures 1-4 refer to the well-cooled cylinder generating heat within
a large axial segment (m = 10,p = 4). With the‘exception of a small region
near { = B, the heat-generating part of the cylinder is in a state of plane
strain, the shear stress is quite localized and has appreciable magnitude
only near { = B, and transient stress levels in most regions never exceed
steady-state values. In Figs. 5-8, the heat-generating length is as in the
first case (B = 4), but the surface cooling is poor (m = 0.1). Hence the
temperatures are higher, almost flat radially, and decay more slowly in
the axial direction than the m = 10 case. Also, the time needed to closely
approximate steady-state conditions is larger by an order of magnitude,
the stress field is approximately plane over a much smaller region and
decays slower axially, and the steady-state plane solution is a poorer ap-
pProximation to the true steady-state values. It is still true, however, that
within the heat-generating region, the transient stress levels do not exceed
the steady-state values.

Figures 9-16 refer to the case B = 0.5, a "small" heat-generating
segment. With the exception of the radial and circumferential components
of stress near the cylinder centerline, the stress levels for this case are
generally lower than the 8 = 4casesand there isnoappreciable region where
a state of plane strainexists. Again the steady-state values provide an upper
bound to the transient stress levels over most regions of the cylinder.
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